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NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences 
scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new 
edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be 
accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts 
& Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, 
authors, publishers, and institutions sets it apart from other research  databases.  The  inclusion  of 
News  of  NAS  RK.  Series  of  geology  and  technical sciences in the Emerging Sources Citation 
Index demonstrates our dedication to providing the most relevant and influential content of geology 
and engineering sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология және 
техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің жаңаланған 
нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл 
индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation 
Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке 
қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен 
мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және 
техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық 
үшін ең өзекті және беделді геология және техникалық ғылымдар бойынша контентке 
адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических 
наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии 
Web of Science. Содержание в этом индексировании находится в стадии рассмотрения 
компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index 
Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of 
Science предлагает качество   и  глубину   контента   для   исследователей,  авторов,  
издателей  и  учреждений. Включение Известия НАН РК. Серия геологии и технических 
наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее 
актуальному и влиятельному контенту по геологии и техническим наукам для нашего 
сообщества.
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ҰҒА академигі, Қазақстан Республикасы Ұлттық Ғылым академиясының президенті, АҚ 
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QUANTITATIVE ESTIMATES OF THE TRANSIENT PROCESS OF THE NON-CONTACT 
GYROSCOPE ROTOR

Abstract. The article focuses on finding quantitative estimates of the transient process of the rotor of a 
non-contact gyroscope, leading to stationary rotation around the axis of the greatest moment of inertia. The 
Euler - Poinsot solution is used as generating the solution to the problem, and the influence of the elasticity 
of the rotor, in accordance with the ideas of the perturbation method, is considered as a small perturbation of 
the Euler motion.

The deformations of the gyroscope rotor are determined. The authors assume that the internal friction in 
the material complies with the Kelvin-Voigt hypothesis.

An expression for the nutation angle as a function of time is obtained, and the time constant of the process 
of damping of nutational oscillations of the rotor is determined.

The drifts are found for a real gyroscope, taking into account the aspherization of the rotor.
Key words: non-contact gyroscope, Euler angles, forces of inertia, Legendre polynomial, Poisson’s ratio, 

dissipative function, internal friction, equation of the gyroscope nutation angle.

Introduction. The article investigates disturbing moments acting on the electrostatic (ESG) rotor, which 
makes the Euler-Poinseau movement. The ESG rotor is a spherical shell placed inside an evacuated jacket. A 
system of electrodes is located on the inner surface of the jacket, with the help of which an electrostatic field 
is created, providing non-contact suspension of the rotor.

The gyroscope rotor is preliminarily untwisted by the subsystem and, in the operating mode, performs 
the Euler-Poinsot movement. In an electrostatic suspension, the supporting forces act along the normal to the 
rotor surface, therefore, if its surface is an ideal sphere, then the moment of ponderomotive forces relative 
to the center of the sphere is zero, and if the center of the rotor mass coincides with its geometric center, the 
kinetic moment of the gyroscope will keep the same direction in space. In actuality, the surface of the rotor is 
not ideally spherical; therefore, in a real electrostatic suspension, the disturbing moment arises, caused by the 
non-sphericity of the rotor, which largely determines the accuracy of the instrument.

The double rotation mode of the ESG rotor is given to get rid of the disturbing moments caused by odd 
harmonics in the shape of its surface. However, during the Euler-Poinsot movement, the inertial forces acting 
on the rotor cause shape deformation of its surface along even harmonics. The influence of these harmonics 
on the accuracy of the instrument is analyzed. A gyroscope is considered, the rotor of which has the form of 
a spherical elastic shell of radius R with the same holes in the poles.

 The Euler-Poinsot movement is taken as the generating solution of the problem, and the influence of 
the elasticity of the rotor, in accordance with the ideas of the perturbation method, is considered as a small 
perturbation of the Euler movement.

Materials and methods. Transient process leading to stationary rotation of the viscoelastic rotor around 
the axis of the greatest moment of inertia

Let us write out the dynamic Euler equations describing the rotor movement of the electrostatic gyroscope 
relative to the center of mass, in the trihedron х: 
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Introduction. The article investigates disturbing moments acting on the electrostatic (ESG) 
rotor, which makes the Euler-Poinseau movement. The ESG rotor is a spherical shell placed inside 
an evacuated jacket. A system of electrodes is located on the inner surface of the jacket, with the 
help of which an electrostatic field is created, providing non-contact suspension of the rotor.

The gyroscope rotor is preliminarily untwisted by the subsystem and, in the operating mode, 
performs the Euler-Poinsot movement. In an electrostatic suspension, the supporting forces act 
along the normal to the rotor surface, therefore, if its surface is an ideal sphere, then the moment of 
ponderomotive forces relative to the center of the sphere is zero, and if the center of the rotor mass 
coincides with its geometric center, the kinetic moment of the gyroscope will keep the same 
direction in space. In actuality, the surface of the rotor is not ideally spherical; therefore, in a real 
electrostatic suspension, the disturbing moment arises, caused by the non-sphericity of the rotor, 
which largely determines the accuracy of the instrument.

The double rotation mode of the ESG rotor is given to get rid of the disturbing moments 
caused by odd harmonics in the shape of its surface. However, during the Euler-Poinsot movement, 
the inertial forces acting on the rotor cause shape deformation of its surface along even harmonics. 
The influence of these harmonics on the accuracy of the instrument is analyzed. A gyroscope is 
considered, the rotor of which has the form of a spherical elastic shell of radius R with the same 
holes in the poles.

The Euler-Poinsot movement is taken as the generating solution of the problem, and the 
influence of the elasticity of the rotor, in accordance with the ideas of the perturbation method, is 
considered as a small perturbation of the Euler movement.

Materials and methods. Transient process leading to stationary rotation of the viscoelastic 
rotor around the axis of the greatest moment of inertia

Let us write out the dynamic Euler equations describing the rotor movement of the 
electrostatic gyroscope relative to the center of mass, in the trihedron х:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜔𝜔𝜔𝜔 ∙ 𝐿𝐿𝐿𝐿 = 05T (1.1)
Here L – vector of the angular momentum of the rotor relative to the center of mass, 𝜔𝜔𝜔𝜔 –

vector of angular velocity of the trihedron х.

							       (1.1)
Here L – vector of the angular momentum of the rotor relative to the center of mass,  – vector of angular 

velocity of the trihedron х.
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In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where fore                                                                                                
l1= I3will be more than l1 and I2, if the ellipsoid is compressed, and will be less than these values if it is 
elongated. Equation projection (1.1) on the axis Ох3equals 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

, therefore,  

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 b – the projection of 
the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 it will be enough to know the three Euler 
angles 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

  in time function, the projections 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 of the vector of the instantaneous angular velocity 
of the rotor rotation on the movable axes Оx1, Ox2, Ох3 are determined by the Euler kinematic equations:

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

To calculate the three Euler angles as functions of time, we assume that the constant direction η3 of the 
angular momentum L, known from the initial conditions.

The projections L - the vector of the angular momentum of the rotor on the movable axes are equal:

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

	

						      (1.2)
					   
From the last equation (1.2) it is seen that the 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 angle must remain constant 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 = 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 herewith 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

Taking into account the expressions for the projection of the vector of the instantaneous angular velocity of 
the rotor rotation on the movable axes Ox1, Ox2,Ох3 and for the axis of the symmetrical rotor 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 we have

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 
Therefore, andφchange proportionally to time:

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

										                       (1.3)
where

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

Instantaneous angular speed of rotation 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 is the geometric sum of three angular velocities  

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 directed 
respectively along 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

.
In this case 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 equals to zero, andare constant. The locus of instantaneous axes of rotation ωin the gyroscope 
rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

. The movement of the 
gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the constant value

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

					     (1.4)
Here, 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

– the angular velocity vector projection 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 on the axis Оx1 at the initial moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of the angular 

velocity on the moving axes Ох1, Ох2,  Ох3

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

	 (1.5)
Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the influence of 

the rotor elasticity, in accordance with the ideas of the perturbation method, will be considered as a small 
perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.Here the first three terms in parentheses are transferable acceleration, the fourth term is relative acceleration, 

and the last is Coriolis acceleration.
We will neglect the expression for the force F small terms We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 

neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

 and 2 We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

, this means that we neglect the 
natural vibrations of an elastic body, since we assume that the natural vibration frequency is much greater than 
the angular velocity of rotation. Since the free movement of the body is considered, the absolute acceleration 
of the center of inertia of the deformable body is equal to zero, therefore, the translational acceleration of the 
center of mass will also be equal to zero [1,2]. 

Then
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We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

	 (1.6)
Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3  taking into account (1.5), we have

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

Here, the xi  coordinates are dimensionless, referred to the rotor radius R.
In a triangle x1 , x2,  х3 we introduce a spherical coordinate system r,  α,  β (0 ≤ r ≤ R, 0 ≤ α ≤ , 0 ≤ β ≤ 2π;)  with polar 

axis х3. Matrix C direction cosines between coordinate system x1, x2, х3  and unit vectorsspherical coordinate 
system has the formula

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

                                                                                                                                               (1.7)
Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r,  α,  β  and, as 

result, we obtain

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

                                    (1.8)
For real designs of non-contact gyroscopes, the ratio 

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

 does not exceed 0.1; therefore, the terms 
with the factor υ in (1.8) turn out to be small. If we neglect the terms with the factor υ in (1.8), then a direct 
calculation can make sure that the forces (1.8) are potential

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

                                    (1.9)
Since the period of free elastic rotor oscillations turns out to be much less than the period of rotor rotation 

around the center of mass, then the displacement vector of its points u(ur, иα, uβ), caused by the presence of 
inertial forces (1.8) can be found as a solution to the quasi-stationary problem of the spatial theory of elasticity

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

                                                                                      (1.10)
								        (1.11)
where μ – Poisson ratio, G – shear modulus, n (n1, n2, n3)  –  normal to the rotor surface,  

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

 – stress component. 
When solving (1.10), (1.11), we will neglect the change in density in the equatorial plane of the rotor and 
restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the center of mass of 
the rotor, and vector 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 of the rotor angular velocity is directed along the axis z3. In the triangle zi, we introduce 
the spherical coordinates α1 β1 with polar axis z3. Then the problem (1.10), (1.11) is reduced to determining 
the displacement vector 

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

, which takes place when a body rotates around a «fixed» axis z3. Using 
the well-known results from [1,2], we obtain

We will neglect the expression for the force F small terms𝒖́𝒖𝒖𝒖and2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢, this means that we 
neglect the natural vibrations of an elastic body, since we assume that the natural vibration 
frequency is much greater than the angular velocity of rotation. Since the free movement of the 
body is considered, the absolute acceleration of the center of inertia of the deformable body is equal 
to zero, therefore, the translational acceleration of the center of mass will also be equal to zero [1,2]. 

Then
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅{[𝜔́𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟] + 𝜔́𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) − 𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟} (1.6)

Projecting the vector (1.6) onto the movable axes Oх1, Oх2 , Ox3 taking into account (1.5), we 
have

𝐹𝐹𝐹𝐹1 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[−(𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2(sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)2)𝑥𝑥𝑥𝑥1 + 0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥2 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜐𝜐𝜐𝜐)𝑥𝑥𝑥𝑥3 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]
𝐹𝐹𝐹𝐹2 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[0.5𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥1 sin 2𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − (𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 + 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥3 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡]

𝐹𝐹𝐹𝐹3 = −𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅[𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥1 cos 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎(𝜐𝜐𝜐𝜐 − 𝑏𝑏𝑏𝑏)𝑥𝑥𝑥𝑥2 sin 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎2𝑥𝑥𝑥𝑥3]
Here, the xicoordinates are dimensionless, referred to the rotor radius R.
In a triangle x1,x2,х3we introduce a spherical coordinate system r, α, β (0 ≤ r ≤ R, 0 ≤ α≤ 𝜋𝜋𝜋𝜋, 0 ≤ β≤ 

2π;) with polar axisх3. Matrix C direction cosines between coordinate system x1, x2, х3 and unit 
vectorsе𝑟𝑟𝑟𝑟е𝛼𝛼𝛼𝛼е𝛽𝛽𝛽𝛽spherical coordinate system has the formula

С = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 0

�                          (1.7)

Taking into account (1.7), we redesign (1.6) on the axis of the spherical coordinate system r, α,
βand, as result, we obtain

𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−�𝑏𝑏𝑏𝑏2 + 𝑎𝑎𝑎𝑎2
2� � + �𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2

2� � (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 +  а𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)  
+  0.5 а2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)];

𝐹𝐹𝐹𝐹𝛼𝛼𝛼𝛼 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−(𝑏𝑏𝑏𝑏2 − 𝑎𝑎𝑎𝑎2
2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝜗𝜗𝜗𝜗

+ 𝑏𝑏𝑏𝑏) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)
𝐹𝐹𝐹𝐹𝛽𝛽𝛽𝛽 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[−𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏 + 𝜗𝜗𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏) + 0.5𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)(1.8)

For real designs of non-contact gyroscopes, the ratio(𝐼𝐼𝐼𝐼3 − I1)/I1does not exceed 0.1; 
therefore, the terms with the factor υ in (1.8) turn out to be small. If we neglect the terms with the 
factor υ in (1.8), then a direct calculation can make sure that the forces (1.8) are potential

𝐹𝐹𝐹𝐹 = −𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 , 𝜋𝜋𝜋𝜋 = −𝑅𝑅𝑅𝑅2

3
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑟𝑟𝑟𝑟2[𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃2(æ)] (1.9)

æ = [𝑎𝑎𝑎𝑎∗ sin𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏∗ cos𝛼𝛼𝛼𝛼]
Here𝑃𝑃𝑃𝑃2(æ) = (3æ2 − 𝐼𝐼𝐼𝐼)/2Legendre polynomial, 𝑎𝑎𝑎𝑎∗ = 𝑎𝑎𝑎𝑎/𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏∗ = 𝑏𝑏𝑏𝑏/𝜔𝜔𝜔𝜔.

Since the period of free elastic rotor oscillations turns out to be much less than the period of 
rotor rotation around the center of mass, then the displacement vector of its points u(ur, иα, uβ), 
caused by the presence of inertial forces (1.8) can be found as a solution to the quasi-stationary 
problem of the spatial theory of elasticity

2(1−𝜇𝜇𝜇𝜇)
(1−2𝜇𝜇𝜇𝜇)

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑅𝑅2

𝐺𝐺𝐺𝐺
𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝜋𝜋𝜋𝜋 = 0 (1.10)

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|𝑟𝑟𝑟𝑟=1 = 0 (1.11)
whereμ – Poisson ratio, G – shear modulus, n (n1, n2, n3) – normal to the rotor surface, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – stress 
component. When solving (1.10), (1.11), we will neglect the change in density in the equatorial 
plane of the rotor and restrict ourselves to finding the displacements for a homogeneous ball.

We introduce the coordinate system z1 , z2 , z3, the beginning of which coincides with the 
center of mass of the rotor, and vector 𝜔𝜔𝜔𝜔�of the rotor angular velocity is directed along the axisz3. In 
the trianglezi, we introduce the spherical coordinatesα1β1with polar axis z3. Then the problem 
(1.10), (1.11) is reduced to determining the displacement vector𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1,which takes place when 
a body rotates around a "fixed" axisz3. Using the well-known results from [1,2], we obtain

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

Substituting into (1.12) the connection between the spherical coordinates 

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
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2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

 we obtain the 
final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1
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2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

			   (1.13)
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Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

 (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric deformation of 

the rotor are omitted. These terms do not affect its periodic deformations and, therefore, are insignificant for 
us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of the relative 
speed of the points of the gyroscope rotor

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
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𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

                                       (1.15)

where

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

Thus, the gyroscope rotor at the nutation angle 

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

 and 

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
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𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

 is under a cyclic load that dissipates 
energy. To estimate the energy loss, we assume that the internal friction in the material complies with the 
Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function [3,4].

The dissipative function showing internal friction must go to zero if there is no internal movement in the 
body, in particular, if the body performs only translational or rotational motion as a whole, that is, it must 
depend not on the velocity itself, but on its gradient [5] 

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

                                                          (1.16)

Here 

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

 - viscous friction coefficients in the rotor material 

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

 

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
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2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

,  – 
deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The coefficients 

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
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2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

 G* are 
further considered small in the sense that the damping time Т1 of the natural elastic oscillations of the rotor 
is much longer than the period of elastic oscillations of the rotor Т0. At the same time, for the correctness of 
the constructions performed in the future, it will be assumed that Т is much less than the characteristic time 
of movement of the rotor relative to the center of mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components of the 
displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼1 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2 (cos𝛼𝛼𝛼𝛼1)
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼1

(1.12)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽1 = 0
Substituting into (1.12) the connection between the spherical coordinates𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽and 𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1 34T, we 

obtain the final relations that give a solution to problem (1.10), (1.11)

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

3𝐺𝐺𝐺𝐺(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟]𝑃𝑃𝑃𝑃2(æ)

𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)

𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼
(1.13)

𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽 = 𝜌𝜌𝜌𝜌𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅3

6𝐺𝐺𝐺𝐺(7+5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟] 𝐼𝐼𝐼𝐼

sin𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃2(æ)
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

Using (1.9) for the Legendre polynomial P2 (æ) in (1.13), we have
𝑃𝑃𝑃𝑃2(æ) =   1

2
{ 3
𝜔𝜔𝜔𝜔2 [𝛼𝛼𝛼𝛼

2

2
+ �𝑏𝑏𝑏𝑏2 − 𝛼𝛼𝛼𝛼2

2
� (cos𝛼𝛼𝛼𝛼)2 + 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝛼𝛼𝛼𝛼 cos(𝛽𝛽𝛽𝛽 − 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2

2
(sin𝛼𝛼𝛼𝛼)2 cos(2𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] −

1} (1.14)
Note that in formulas (1.14), the time-constant terms describing the centrally symmetric 

deformation of the rotor are omitted. These terms do not affect its periodic deformations and, 
therefore, are insignificant for us in the future.

Results. Differentiating the formula (1.13) with respect to time, we find the components of 
the relative speed of the points of the gyroscope rotor

𝑢̇𝑢𝑢𝑢𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 sin 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(sin𝛼𝛼𝛼𝛼)2 sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝑢̇𝑢𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos 2𝑎𝑎𝑎𝑎 sin( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2

2
sin2α sin(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)] (1.15)

𝑢̇𝑢𝑢𝑢𝛽𝛽𝛽𝛽 =
𝑃𝑃𝑃𝑃
𝐺𝐺𝐺𝐺
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 cos𝛼𝛼𝛼𝛼 cos( 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 sin𝛼𝛼𝛼𝛼 cos(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

where

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(𝐼𝐼𝐼𝐼 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) =  
𝑅𝑅𝑅𝑅3

2(7 + 5𝜇𝜇𝜇𝜇)
[(2 + 𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟3 − (3 + 2𝜇𝜇𝜇𝜇)𝑟𝑟𝑟𝑟];

Thus, the gyroscope rotor at the nutation angle ϑ ≠ 0andϑ ≠ π/2is under a cyclic load that 
dissipates energy. To estimate the energy loss, we assume that the internal friction in the material 
complies with the Kelvin - Voigt hypothesis and we introduce the Rayleigh dissipation function
[3,4].

The dissipative function showing internal friction must go to zero if there is no internal 
movement in the body, in particular, if the body performs only translational or rotational motion as 
a whole, that is, it must depend not on the velocity itself, but on its gradient [5]

Ф = 𝐼𝐼𝐼𝐼
2 ∫[𝜆𝜆𝜆𝜆∗𝜀𝜀𝜀𝜀̇2 +𝐺𝐺𝐺𝐺∗�𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽2 � + 2𝐺𝐺𝐺𝐺∗(𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛼𝛼𝛼𝛼2 + 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝛽𝛽𝛽𝛽2 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽2 )]𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (1.16)

Here𝜆𝜆𝜆𝜆∗, 𝐺𝐺𝐺𝐺∗ - viscous friction coefficients in the rotor material 𝜀𝜀𝜀𝜀̇ = 𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜀𝜀𝜀𝜀𝛽̇𝛽𝛽𝛽𝛽𝛽𝛽𝛽,
𝜀𝜀𝜀𝜀𝑟̇𝑟𝑟𝑟𝑟𝑟𝑟𝑟 … . 𝜀𝜀𝜀𝜀𝛼̇𝛼𝛼𝛼𝛽𝛽𝛽𝛽 – deformation rate, integration in (1.16) is carried out over the entire rotor volume. (The 
coefficients 𝜆𝜆𝜆𝜆∗G* are further considered small in the sense that the damping time Т1 of the natural 
elastic oscillations of the rotor is much longer than the period of elastic oscillations of the rotor Т0.
At the same time, for the correctness of the constructions performed in the future, it will be assumed 
that Т is much less than the characteristic time of movement of the rotor relative to the center of 
mass).

Formulas, expressing the deformation tensor in terms of the derivatives of the components 
of the displacement vector in spherical coordinates α, β, r, have the form [6,7]

𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

,𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

+ 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

,

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
,

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

,						    
 				  
 								        (1.17)
 
Substituting (1.20) into (1.22) for the deformation rate, we have

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

	
						      (1.18)
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Substituting (1.18) into (1.16) and performing the necessary calculations, we find the Rayleigh dissipative 
function

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

				    (1.19)

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

	
Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that the tensors of 

the coefficients of elasticity and the coefficients of viscosity are similar. With this assumption

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

						      (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal friction. In this 

case, the radial movement function и= u(r,t) satisfies the Lamé equation

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

                                                                                                                                                                      (1.21)

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

										                     (1.22)
to boundary condition

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

 		             (1.23 )
The solution of equation (1.22) after separation of variables has the form

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

								                    (1.24)

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

									                     (1.25)
Here 

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

 - Bessel function with half index.
Expressing the tension 

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)

 through the movement u(r,t) from the boundary condition (1.23) we obtain the 
transcendental equation for determining the parameter k

 𝜀𝜀𝜀𝜀𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼

− 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

, (1.17)

     𝜀𝜀𝜀𝜀𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

(𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ 1
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),

𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = 1
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽

+ 𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

− 𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.

Substituting (1.20) into (1.22) for the deformation rate, we have

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺

𝑣𝑣𝑣𝑣[𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−2𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2}

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝛽𝛽𝛽𝛽 =
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)]

+ 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)[−𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) + [𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟) − 𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)] (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼)2]}

𝜀𝜀𝜀𝜀𝑟́𝑟𝑟𝑟𝛼𝛼𝛼𝛼 =
𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

𝜐𝜐𝜐𝜐 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 2
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

−
𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟

� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) +
𝑎𝑎𝑎𝑎2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝛼𝛼𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛼́𝛼𝛼𝛼𝛽𝛽𝛽𝛽 = − 𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
[−𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

𝜀𝜀𝜀𝜀𝛽́𝛽𝛽𝛽𝑟𝑟𝑟𝑟 = −2 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅
�𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
+ 2 𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
− 𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟)

𝑟𝑟𝑟𝑟
� [𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽) + 𝑎𝑎𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(2𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 − 2𝛽𝛽𝛽𝛽)]

(1.18)
Substituting (1.18) into (1.16) and performing the necessary calculations, we find the 

Rayleigh dissipative function
Ф = 8𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌2𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇)

𝐼𝐼𝐼𝐼5𝐺𝐺𝐺𝐺2
𝑑𝑑𝑑𝑑4(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
�(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼12
+ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗)2

𝐼𝐼𝐼𝐼32
� (1.19)

𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 1
𝐼𝐼𝐼𝐼05(7+5𝜇𝜇𝜇𝜇)2 �

15
4
𝜆𝜆𝜆𝜆∗(2𝜇𝜇𝜇𝜇 − 1)2 + 𝐺𝐺𝐺𝐺∗(767𝜇𝜇𝜇𝜇2 + 1668𝜇𝜇𝜇𝜇 + 828)�

Dependences (1.17) were used to obtain relation (1.19).
To estimate the coefficients of viscous friction G* and λ* included in (1.19), we assume that 

the tensors of the coefficients of elasticity and the coefficients of viscosity are similar. With this 
assumption

𝜆𝜆𝜆𝜆∗ = 2𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

𝐺𝐺𝐺𝐺∗ (1.20)
We consider centrally symmetric natural vibrations of a ball in the presence of internal 

friction. In this case, the radial movement function и= u(r,t) satisfies the Lamé equation
2
𝑅𝑅𝑅𝑅2

𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

ℒ[𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝐺𝐺∗𝑢́𝑢𝑢𝑢] − 𝜌𝜌𝜌𝜌𝑢̈𝑢𝑢𝑢 = 0                                   (1.21)

ℒ = ∂2

∂r2
+ 2

r
∂
∂r
− 2

r2
(1.22)

to boundary condition
𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=1 = 0                                                                                      (1.23)

The solution of equation (1.22) after separation of variables has the form

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
�
1
2 𝐽𝐽𝐽𝐽2

3
�𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (1𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡) (1.24)

𝑘𝑘𝑘𝑘2 = 𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)

𝜌𝜌𝜌𝜌
(𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺∗𝜒𝜒𝜒𝜒𝑖𝑖𝑖𝑖)

(1.25)

Here 𝐽𝐽𝐽𝐽2
3
(𝑧𝑧𝑧𝑧) = � 2

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
�
1/2

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧�- Bessel function with half index.

Expressing the tension𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟through the movement u(r,t) from the boundary condition (1.23) we 
obtain the transcendental equation for determining the parameter k

tgk = κ
I−δk2

; δ = (I−μ)
2(I−2μ)

. (1.26)
									                (1.26)

The first positive root of equation (1.31) lies in the interva The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

  In particular, at 
The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋

2
< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =

0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find
𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

. Let’s consider k1 as known and from the equation (1.26) and find
The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋

2
< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =

0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find
𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

			   (1.27)

where 

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

 - the first natural frequency of elastic vibrations of the rotor. When deriving the formula (1.27), 
it was taken into account that G* « G/

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then according to 

(1.32), we have

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

 									               (1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a fixed point is 

determined by the expression

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

									               (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of the gyroscope 

rotor is zero (L = const) and differentiating the formula (1.34), we obtain the equation for the nutation angle v

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

It is known that the rate of decay of the mechanical energy of the system is equal to the doubled dissipative 
function Ф, the refore, taking into account (1.5), we come to the following differential equation for the 
gyroscope nutation angle

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

					           (1.31)
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The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

								              (1.36)
The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

								              (1.37)
and denote by 

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

, т  the obtained equation can be transformed to the form 

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

Consequently, the secular evolution of the nutation angle will be determined by the equation

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

					           (1.38)
Here 

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

 initial value of the angle between the axis  х3 of symmetry of the rotor and the axis η3. 
Determination of the nutation angle make it possible to determine the speed of alignment of the axis of 

dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to draw a conclusion 
about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)

= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

 decreases over time. Thus, when 
the rotor moves around the center of mass, the dynamic axis of the rotor symmetry x3 tends to coincide with 
the axis η3, along which the kinetic momentum vector is directed. Formula (1.38) allows one to estimate the 
axis movement of the rotor symmetry during its spin-up. Substitution of the parameter G*, which determines 
the internal friction (1.33), into the time constant (1.37) leads to the following final result

The first positive root of equation (1.31) lies in the interval 𝜋𝜋𝜋𝜋
2

< k1 < 𝜋𝜋𝜋𝜋. In particular, at 𝜇𝜇𝜇𝜇 =
0.3, 𝛿𝛿𝛿𝛿 = 0.875,  k1 ≈ 2.67. Let's consider k1as known and from the equation (1.26) and find

𝜒𝜒𝜒𝜒 = 𝜒𝜒𝜒𝜒1 + 𝜒𝜒𝜒𝜒12

2
𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
1;𝜒𝜒𝜒𝜒12 = 𝜅𝜅𝜅𝜅12 �

2𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅2(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)

�, (1.27)
where𝜒𝜒𝜒𝜒1 - the first natural frequency of elastic vibrations of the rotor. When deriving the 

formula (1.27), it was taken into account that G* « G/χ.
If we denote by η the logarithmic decrement of the damping of the rotor oscillations, then 

according to (1.32), we have

𝜂𝜂𝜂𝜂 =
𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺∗

𝐺𝐺𝐺𝐺
χ1

Therefore, as an estimate of the coefficient of viscous friction, one can use the relation

𝐺𝐺𝐺𝐺∗ = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅
𝜋𝜋𝜋𝜋𝜅𝜅𝜅𝜅1

�𝜌𝜌𝜌𝜌𝐺𝐺𝐺𝐺(𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇)
2(1−𝜇𝜇𝜇𝜇)

�
1/2

(1.29)
Discussion. The kinetic energy of a dynamically symmetric rigid body moving relative to a 

fixed point is determined by the expression
𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑2

2
(𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼1

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼3

) (1.30)
Therefore, bearing in mind that the moment of external forces relative to the center of mass of 

the gyroscope rotor is zero (L = const) and differentiating the formula (1.34), we obtain the 
equation for the nutation angle v

𝜗̇𝜗𝜗𝜗 =
2𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼3𝑇𝑇𝑇𝑇

(𝐼𝐼𝐼𝐼3 − 𝐼𝐼𝐼𝐼1)𝐿𝐿𝐿𝐿2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2𝜗𝜗𝜗𝜗
It is known that the rate of decay of the mechanical energy of the system is equal to the 

doubled dissipative function Ф, the refore, taking into account (1.5), we come to the following 
differential equation for the gyroscope nutation angle

𝜕𝜕𝜕𝜕𝜗𝜗𝜗𝜗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼3

3𝐼𝐼𝐼𝐼1
3𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼3
2𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗
𝐼𝐼𝐼𝐼12

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜗𝜗𝜗𝜗) (1.31)

𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇) = 4
𝐺𝐺𝐺𝐺∗
𝐹𝐹𝐹𝐹(𝜇𝜇𝜇𝜇) = 707𝜇𝜇𝜇𝜇2+2016𝜇𝜇𝜇𝜇+1437

105(7+5𝜇𝜇𝜇𝜇)2
(1.36)

The formula (1.32) was obtained from (1.20) taking into account dependence (1.33).
If we introduce dimensionless time by the formula
𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏𝑡́𝑡𝑡𝑡; 𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺2

4𝜋𝜋𝜋𝜋(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝐺𝐺𝐺𝐺∗𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅7𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)
(1.37)

and denote by 𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼32/𝐼𝐼𝐼𝐼12, 𝑧𝑧𝑧𝑧 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑣𝑣𝑣𝑣, т the obtained equation can be transformed to the form 
(𝐼𝐼𝐼𝐼 + 𝑧𝑧𝑧𝑧)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2𝑧𝑧𝑧𝑧(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧)
= −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Consequently, the secular evolution of the nutation angle will be determined by the equation
tg2s𝜗𝜗𝜗𝜗(𝐼𝐼𝐼𝐼 + 3𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗0)𝑠𝑠𝑠𝑠−1 = 𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗0(𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔2𝜗𝜗𝜗𝜗)𝑠𝑠𝑠𝑠−1 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒(−2𝑠𝑠𝑠𝑠𝑡́𝑡𝑡𝑡) (1.38) 
Here𝑣𝑣𝑣𝑣0initial value of the angle between the axis  х3 of symmetry of the rotor and the axisη3.
Determination of the nutation angle make it possible to determine the speed of alignment of 

the axis of dynamic symmetry with the kinetic momentum vector, that is, the damping speed, and to 
draw a conclusion about the time required to prepare the device for operation [8].

For the rotor with an oblate ellipsoid of inertia I3> I1 the nutation angle 𝜗𝜗𝜗𝜗 decreases over 
time. Thus, when the rotor moves around the center of mass, the dynamic axis of the rotor 
symmetry x3tends to coincide with the axis η3, along which the kinetic momentum vector is 
directed. Formula (1.38) allows one to estimate the axis movement of the rotor symmetry during its 
spin-up. Substitution of the parameter G*, which determines the internal friction (1.33), into the 
time constant (1.37) leads to the following final result

𝜏𝜏𝜏𝜏 = 𝐼𝐼𝐼𝐼5𝐼𝐼𝐼𝐼13𝐼𝐼𝐼𝐼33𝐺𝐺𝐺𝐺3/2𝑅𝑅𝑅𝑅1
4𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)𝜌𝜌𝜌𝜌2𝑅𝑅𝑅𝑅6𝑑𝑑𝑑𝑑4𝑓𝑓𝑓𝑓(𝜇𝜇𝜇𝜇)

�2(𝐼𝐼𝐼𝐼−𝜇𝜇𝜇𝜇)
𝐼𝐼𝐼𝐼−2𝜇𝜇𝜇𝜇

�
1/2

(1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope 

with a non-contact suspension, the rotor of which is a thin spherical shell.

								              (1.39)
Of course, a similar mechanism for damping nutation vibrations also exists for a gyroscope with a non-

contact suspension, the rotor of which is a thin spherical shell.
Numerical example 1.1. Let us consider an electrostatic gyroscope with a solid beryllium rotor. The 

rotor radius R= 0.5 cm, mechanical characteristics: density p = 1850 kg/m3, shear modulus G = 1,15*1011 
Pa, Poisson’s ratio μ = 0.3, angular velocity 

In the case when the ellipsoid of inertia is an ellipsoid of rotation about the axis Оx3, where
fore 𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2; I3will be more than 𝐼𝐼𝐼𝐼1and I2, if the ellipsoid is compressed, and will be less than these 
values if it is elongated. Equation projection (1.1) on the axis Ох3equals𝐼𝐼𝐼𝐼3

𝑑𝑑𝑑𝑑𝜔𝜔𝜔𝜔3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0, therefore, 𝜔𝜔𝜔𝜔3 =
𝑏𝑏𝑏𝑏 – the projection of the angular velocity vector onto the x3 axis at the initial moment of time.

To determine the rotor position relative to the fixed axes𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2,𝜉𝜉𝜉𝜉3it will be enough to know 
the three Euler angles 𝜗𝜗𝜗𝜗,φ,ψin time function, the projections𝜔𝜔𝜔𝜔1,𝜔𝜔𝜔𝜔2,𝜔𝜔𝜔𝜔3of the vector of the 
instantaneous angular velocity of the rotor rotation on the movable axes 0x1, Ox2,Ох3are 
determined by the Euler kinematic equations:

𝜔𝜔𝜔𝜔1 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 + 𝜗́𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 ;
𝜔𝜔𝜔𝜔2 = 𝜑́𝜑𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 − 𝜗́𝜗𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑;

𝜔𝜔𝜔𝜔3 = 𝜑́𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗 + 𝜑́𝜑𝜑𝜑;
To calculate the three Euler angles as functions of time, we assume that the constant 

direction η3 of the angular momentum L, known from the initial conditions.
The projections L - the vector of the angular momentum of the rotor on the movable axes are 

equal:
𝐼𝐼𝐼𝐼1𝜔𝜔𝜔𝜔1 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 sin𝜑𝜑𝜑𝜑

𝐼𝐼𝐼𝐼2𝜔𝜔𝜔𝜔2 = 𝐿𝐿𝐿𝐿 sin𝜗𝜗𝜗𝜗 cos𝜑𝜑𝜑𝜑 (1.2)
𝐼𝐼𝐼𝐼3𝜔𝜔𝜔𝜔3 = 𝐿𝐿𝐿𝐿 cos𝜗𝜗𝜗𝜗

From the last equation (1.2) it is seen that the ϑangle must remain constant 𝜗𝜗𝜗𝜗 =
𝜗𝜗𝜗𝜗0,herewithcos ϑ =  𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼3/𝐿𝐿𝐿𝐿.Taking into account the expressions for the projection of the vector of 
the instantaneous angular velocity of the rotor rotation on the movable axes0x1, Ox2,Ох3and for the 
axis of the symmetrical rotor (𝐼𝐼𝐼𝐼1 = 𝐼𝐼𝐼𝐼2) we have

𝑑𝑑𝑑𝑑ψ
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼1

;             𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)
𝐼𝐼𝐼𝐼1

𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Therefore, ψandφchange proportionally to time:
ψ = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
𝑡𝑡𝑡𝑡;𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
− 𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡 (1.3)

where
𝜗𝜗𝜗𝜗 = 𝑏𝑏𝑏𝑏 (𝐼𝐼𝐼𝐼3−𝐼𝐼𝐼𝐼1)

𝐼𝐼𝐼𝐼1
;                  𝑏𝑏𝑏𝑏 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗𝜗𝜗

Instantaneous angular speed of rotation 𝜔𝜔𝜔𝜔�is the geometric sum of three angular 
velocitiesϑ́, φ́, ψ́, directed respectively alongOI,О𝜂𝜂𝜂𝜂3,𝑂𝑂𝑂𝑂𝑥𝑥𝑥𝑥3.

In this caseϑ́ equals to zero, φ́andφ́are constant. The locus of instantaneous axes of rotation 
ωin the gyroscope rotor has a circular cone with the axis Ох3.

The locus of instantaneous axes in space is a circular cone with the axis О𝜂𝜂𝜂𝜂3. The movement 
of the gyroscope rotor is obtained as a result of uniform rolling of one cone over the other.

In the absence of external forces, the angular momentum L has the fixed direction and the 
constant value

𝐿𝐿𝐿𝐿 = [(𝐼𝐼𝐼𝐼1𝑎𝑎𝑎𝑎)2 + (𝐼𝐼𝐼𝐼3𝑏𝑏𝑏𝑏)2]1/2 (1.4)
Here,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼1
sin𝜗𝜗𝜗𝜗 – the angular velocity vector projection 𝜔𝜔𝜔𝜔�on the axisОx1 at the initial 

moment of time.
Taking into account (1.2) and (1.3) we obtain the following equations for the projections of 

the angular velocity on the moving axesОх1,Ох2, 0х3
𝜔𝜔𝜔𝜔1 = 𝑎𝑎𝑎𝑎cos𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔2 = 𝑎𝑎𝑎𝑎 sin𝜗𝜗𝜗𝜗𝑡𝑡𝑡𝑡;𝜔𝜔𝜔𝜔3 = 𝑏𝑏𝑏𝑏; (1.5)

Movement (1.2) - (1.5) will be taken as the generating solution of the problem, and the 
influence of the rotor elasticity, in accordance with the ideas of the perturbation method, will be 
considered as a small perturbation of the Euler movement.

Density of the force of inertia F is determined by the formula
𝐹𝐹𝐹𝐹 = −𝜌𝜌𝜌𝜌[𝜔𝜔𝜔𝜔 ∙ 𝑅𝑅𝑅𝑅(𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟) + 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔 ∙ 𝑟𝑟𝑟𝑟́ +𝑤𝑤𝑤𝑤0 + 𝑢𝑢𝑢𝑢 +́ 2𝜔𝜔𝜔𝜔 ∙ 𝑢́𝑢𝑢𝑢] 

Here the first three terms in parentheses are transferable acceleration, the fourth term is 
relative acceleration, and the last is Coriolis acceleration.

 = 1.88*104 s-1, I1 = 0.9*I3, I3 = 0.968*10-8 kgm2, Kinetic 
momentum L = 1.824*10-4 kgm2/s, logarithmic decay rate η = 0.02. In this case, from (1.39) for the time 
constant we obtain τ = 250 hours.

Numerical example 1.2. Now we consider an electrostatic gyroscope with a solid aluminum rotor. 
Density p = 2720 kg/m3, shear modulus G = 2.65*1010 Pa, Poisson’s ratio μ=0.32, the rest of the mechanical 
characteristics are the same as above. Then from (1.39) we find τ=20 hours.

As can be seen from these numerical results, to maintain the “double rotation” of the rotor, for a sufficiently 
long time, it is necessary to apply force moments to it, which causes additional errors of the device.

Conclusions. 1. A quantitative estimate of the transient process of the rotor of a non-contact electrostatic 
gyroscope (ESG), which leads to stationary rotation around the axis of the greatest moment of inertia, is 
found.

2. The problem of the stress-strain state of the ESG rotor in the presence of inertial forces in a quasi-
stationary setting is solved. The deformations of the gyroscope rotor are determined.

3. An expression for the nutation angle as a function of time is obtained, and the time constant of the 
process of damping of nutation oscillations of the rotor is determined.

4. The drifts are found for a real gyroscope, taking into account the rotor aspherization. The presence of 
an annular belt gives an error in calculations of no more than 10 percent, therefore, the deformation of the 
rotor surface caused by the presence of an annular belt in the case of its axisymmetric rotation is insignificant. 
Therefore, when determining the rotor deformation, the presence of the belt can be neglected.

5. Neglecting the terms containing a small parameter in a degree higher than the first, the expression for 
the strength function is presented in the form of a series in Legendre polynomials.

6. It was found that when an ellipsoidal body moves in a non-contact suspension, there are at least six 
equilibrium positions.

7. It has been established that an increase in velocity is acceptable as long as the drift caused by deformation 
is not comparable to the drift due to manufacturing errors.

8. From the obtained numerical data, it was established that to maintain the “double rotation” of the rotor, 
for a sufficiently long time, it is necessary to apply force moments to it, which in itself causes additional errors 
of the device.
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Аннотация. Мақалада инерцияның ең үлкен моменті осінің айналасында қозғалмайтын айналуға 
алып келетін байланыссыз гироскоптың роторының өтпелі процесінің сандық бағаларын табуға көңіл 
бөлінеді. Мәселенің генераторлық шешімі ретінде Эйлер-Пуансо шешімі қолданылады, ал ротордың 
серпімділігінің әсері, бұзылу әдісі идеяларына сәйкес, Эйлер қозғалысының кішкене толқуы ретінде 
қарастырылады. Гироскоп роторының деформациясы анықталады. Мақала материалдағы ішкі үйкеліс 
Кельвин-Фойгт гипотезасына бағынады деп болжайды.

Нутация бұрышы үшін өрнек алынады және ротордың нутационды тербелістерін демпферлеу 
процесінің уақыт константасы анықталады.

Түйінді сөздер: Жанаспайтын гироскоп, Эйлер бұрыштары, инерция үштері, Лежандр көпмүшелігі, 
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КОЛИЧЕСТВЕННЫЕ ОЦЕНКИ ПЕРЕХОДНОГО ПРОЦЕССА РОТОРА
НЕКОНТАКТНОГО ГИРОСКОПА

Аннотация. В статье основное внимание уделяется нахождению количественных оценок 
переходного процесса ротора неконтактного гироскопа, приводящего к стационарному вращению 
вокруг оси наибольшего момента инерции. Решение Эйлера – Пуансо применяется в качестве 
порождающего решение задачи, а влияние упругости ротора в соответствии с идеями метода 
возмущений рассматривается как малое возмущение эйлерова движения.

Определены деформации ротора гироскопа. В статье предполагается, что внутреннее трение в 
материале подчиняется гипотезе Кельвина-Фойгта. 

Получено выражение угла нутации в зависимости от времени и определена постоянная времени 
процесса затухания нутационных колебаний ротора. 

Ключевые слова: неконтактный гироскоп, углы Эйлера, силы инерций, полином Лежандра, 
коэффициент Пуассона, диссипативная функция, внутреннее трение, уравнение угла нутации 
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